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ABSTRACT

In the paper, the authors establish a nice inequality for the logarithmic
function, derive an inequality for the exponential function, and recover
a double inequality for bounding the exponential mean in terms of the
arithmetic and logarithmic means.
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1. Introduction

In (Kuang, p. 352), two inequalities

e(x+y)/2 <
ex − ey

x− y
<
ex + ey

2

and
x+ y

2
<

(x− 1)ex − (y − 1)ey

ex − ey
for x 6= y are listed. The first double inequality may be derived easily from
the Hermite-Hadamard integral inequality for the convex function et on an
interval between x and y. The second one is due to Romanian mathematician
G. Toader, but we do not know its accurate origin. Comparing the above
inequalities, one may conjecture that

ln
ex − ey

x− y
<

(x− 1)ex − (y − 1)ey

ex − ey
< ln

ex + ey

2
, x 6= y. (1)

Is the double inequality (1) really valid? The aim of this paper is to answer
the question, to confirm the validity of the double inequality (1), and to find its
equivalence, a double inequality for bounding the exponential mean in terms
of the arithmetic and logarithmic means.

2. Main results

We start out from a nice inequality for the logarithmic function.

Theorem 2.1. For a > 0 and a 6= 1, we have

a− 1

ln a

(
1 + ln

a− 1

ln a

)
< a. (2)

Proof. Let

h(t) = ln t− (t− 1)(1− ln t+ ln |1− t| − ln | ln t|), t 6= 1.

Then straightforward computation gives

h′(t) = ln t− ln |1− t|+ ln | ln t| − 1 +
t− 1

t ln t
,

h′′(t) =
(ln t− t+ 1)(t ln t+ 1− t)

(1− t)t2 ln2 t
,
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and
lim
t→1

h(t) = lim
t→1

h′(t) = 0.

Since
1− 1

t
< ln t < t− 1, t 6= 1,

it follows that h′′(t) < 0 on (0, 1) and h′′(t) > 0 on (1,∞). These imply that the
first derivative h′(t) is decreasing on (0, 1), increasing on (1,∞), and positive
for t 6= 1. Furthermore, the function h(t) is increasing for t 6= 0, negative on
(0, 1), and positive on (1,∞).

We observe that h(t) ≶ 0 for t > 0 and t 6= 1 are equivalent to

ln t ≶ (t− 1)

(
1− ln t+ ln

t− 1

ln t

)
,

1 >
t− 1

ln t

(
1− ln t+ ln

t− 1

ln t

)
,

1

t
>

1− 1/t

ln t

(
1 + ln

1− 1/t

ln t

)
,

1

t
>

1− 1/t

− ln(1/t)

[
1 + ln

1− 1/t

− ln(1/t)

]
.

Replacing 1
t by a in the last inequality leads to the inequality (2). The proof

of Theorem 2.1 is complete.

Theorem 2.2. For x 6= y, we have

ln
ex − ey

x− y
<

(x− 1)ex − (y − 1)ey

ex − ey
. (3)
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Proof. The inequality (3) may be rewritten as

ln
ex − ey

x− y
<
xex − yey

ex − ey
− 1,

ln
ex+1 − ey+1

x− y
<
xex − yey

ex − ey
,

xex − yey

x− y
>
ex − ey

x− y
ln
ex+1 − ey+1

x− y
,∫ y

x
et(1 + t) d t

y − x
>

∫ y

x
et d t

y − x
ln

∫ y

x
et+1 d t

y − x
,∫ 1

0

ex+(y−x)t[1 + x+ (y − x)t] d t >
∫ 1

0

ex+(y−x)t d t ln

∫ 1

0

ex+(y−x)t+1 d t,∫ 1

0

e(y−x)t[1 + x+ (y − x)t] d t >
∫ 1

0

e(y−x)t d t

[
x+ 1 + ln

∫ 1

0

e(y−x)t d t

]
,∫ 1

0

e(y−x)t(y − x)td t >
∫ 1

0

e(y−x)t d t ln

∫ 1

0

e(y−x)t d t,

(ln a)

∫ 1

0

attd t >

∫ 1

0

at d t ln

∫ 1

0

at d t,

where a = ey−x. Since the inequality (3) is symmetric between x and y, without
loss of generality, we assume y > x which means that a > 1. Then, by a direct
integration, the last inequality containing the quantity a becomes

1− a+ a ln a

ln a
>
a− 1

ln a
ln
a− 1

ln a
,

1− a+ a ln a+ (1− a) ln
(
a−1
ln a

)
ln a

> 0,

1− a+ a ln a+ (1− a) ln
(
a− 1

ln a

)
> 0,

a ln a+ (1− a)
[
1 + ln

(
a− 1

ln a

)]
> 0,

a ln a > (a− 1)

[
1 + ln

(
a− 1

ln a

)]
,

a >
a− 1

ln a

[
1 + ln

(
a− 1

ln a

)]
.

From the inequality (2) in Theorem 2.1, the inequality (3) follows immediately.
The proof of Theorem 2.2 is complete.
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Theorem 2.3. For s, t > 0 and s 6= t, we have

s− t
ln s− ln t

<
1

e

(
ss

tt

)1/(s−t)

. (4)

Proof. Let ex = s and ey = t. Then the inequality (3) becomes

ln
s− t

ln s− ln t
<

(ln s− 1)s− (ln t− 1)t

s− t

which is equivalent to

s− t
ln s− ln t

< exp
(ln s− 1)s− (ln t− 1)t

s− t
=

1

e

(
ss

tt

)1/(s−t)

.

The proof of Theorem 2.3 is complete.

Theorem 2.4. For x 6= y, we have

(x− 1)ex − (y − 1)ey

ex − ey
< ln

ex + ey

2
. (5)

Proof. Since the inequality (5) is symmetric with respect to x and y, without
loss of generality, we assume y > x. Then the inequality (5) can be rearranged
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as

xex − yey

ex − ey
< ln

ex+1 + ey+1

2
,∫ y

x
(1 + t)et d t∫ y

x
et d t

< ln
ex+1 + ey+1

2
,∫ 1

0
[1 + x+ (y − x)t]ex+(y−x)t d t∫ 1

0
ex+(y−x)t d t

< ln
ex+1 + ey+1

2
,

1 + x+

∫ 1

0
(y − x)tex+(y−x)t d t∫ 1

0
ex+(y−x)t d t

< ln
ex+1 + ey+1

2
,∫ 1

0
(y − x)te(y−x)t d t∫ 1

0
e(y−x)t d t

< ln
ex+1 + ey+1

2
− (1 + x),∫ 1

0
(y − x)te(y−x)t d t∫ 1

0
e(y−x)t d t

< ln
ex+1 + ey+1

2e1+x
,∫ 1

0
(y − x)te(y−x)t d t∫ 1

0
e(y−x)t d t

< ln
1 + ey−x

2
,

(ln a)
∫ 1

0
tat d t∫ 1

0
at d t

< ln
1 + a

2
,

(ln a)

∫ 1

0

tat d t <

∫ 1

0

at d t ln
1 + a

2
,

a ln a+ 1− a
ln a

<
a− 1

ln a
ln

1 + a

2
,

a ln a+ 1− a < (a− 1) ln
1 + a

2
,

where a = ey−x. Let

H(t) = t ln t+ 1− t− (t− 1) ln
1 + t

2
, t > 1.

Then a straightforward computation gives

H ′(t) = ln t− t− 1

t+ 1
− ln

t+ 1

2
and H ′′(t) =

1− t
t(t+ 1)2

< 0.

This implies that H ′(t) is decreasing and negative on (1,∞). Furthermore, the
function H(t) is decreasing and negative on (1,∞). Hence, the inequality (5)
is proved. The proof of Theorem 2.4 is complete.
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Theorem 2.5. For x 6= y, we have

1

e

(
ss

tt

)1/(s−t)

<
s+ t

2
. (6)

Proof. Taking in (5) ex = s and ey = t figures out

(ln s− 1)s− (ln t− 1)t

s− t
< ln

s+ t

2

which is equivalent to

s+ t

2
> exp

(ln s− 1)s− (ln t− 1)t

s− t
=

1

e

(
ss

tt

)1/(s−t)

.

The proof of Theorem 2.5 is complete.

3. Remarks

Remark 3.1. The functions on both sides of the inequality (4) are respectively
called the logarithmic and exponential means. See Guo and Qi (2015c), Qi
et al. (2014b,c,d, 2015) and plenty of references therein. Therefore, we recover
a double inequality for bounding the exponential mean in terms of the arithmetic
and logarithmic means.

Remark 3.2. The three inequalities (2), (3), and (4) are equivalent to each
other, although they are of different forms. Similarly, the two inequalities (5)
and (6) are also equivalent to each other, although they are of different forms.

Remark 3.3. Taking in (2) a = et for t ∈ R \ {0} yields

et − 1

t

(
1 + ln

et − 1

t

)
< et,

that is,

ln
et − 1

t
<

tet

et − 1
− 1.

Expanding the functions et−1
t and tet

et−1 into power series results in

ln

∞∑
k=1

tk−1

k!
= ln

∞∑
k=0

tk

(k + 1)!
<

tet

et − 1
− 1 =

∞∑
k=1

Bk(1)

k!
tk =

∞∑
k=1

(−1)kBk

k!
tk,
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where the Bernoulli polynomials Bk(x) are defined by the generating functions

zexz

ez − 1
=

∞∑
k=0

Bk(x)

k!
zk, |z| < 2π

and the Bernoulli numbers Bk = Bk(0) = (−1)kBk(1).

According to (Comtet, 1974, pp. 140–141, Theorem A), the logarithmic poly-
nomials Ln defined by

ln

(
1 +

∞∑
n=1

gn
tn

n!

)
=

∞∑
n=1

Ln
tn

n!

equal

Ln = Ln(g1, g2, . . . , gn) =

n∑
k=1

(−1)k−1(k − 1)!Bn,k(g1, g2, . . . , gn−k+1),

where Bn,k denotes the Bell polynomials of the second kind which are defined
by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n,`i∈{0}∪N∑n
i=1 i`i=n∑n
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi
i!

)`i

for n ≥ k ≥ 0. In (Guo and Qi, 2015a, Theorem 1), the formula

Bn,k

(
1

2
,
1

3
, . . . ,

1

n− k + 2

)
=

n!

(n+ k)!

k∑
`=0

(−1)k−`
(
n+ k

k − `

)
S(n+ `, `)

for n ≥ k ≥ 0 was proved by two approaches, where S(n, k) denotes the Stirling
numbers of the second kind which may be generated by

(ex − 1)k

k!
=

∞∑
n=k

S(n, k)
xn

n!
, k ∈ N.
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Consequently, we obtain

ln
et − 1

t
= ln

∞∑
k=0

tk

(k + 1)!
= ln

[
1 +

∞∑
k=1

1

k + 1

tk

k!

]

=

∞∑
n=1

[
n∑

k=1

(−1)k−1(k − 1)!Bn,k

(
1

2
,
1

3
, . . . ,

1

n− k + 2

)]
tn

n!

=

∞∑
n=1

[
n∑

k=1

(−1)k−1(k − 1)!
n!

(n+ k)!

k∑
`=0

(−1)k−`
(
n+ k

k − `

)
S(n+ `, `)

]
tn

n!

=

∞∑
n=1

[
n∑

k=1

1

k
(
n+k
k

) k∑
`=0

(−1)`+1

(
n+ k

k − `

)
S(n+ `, `)

]
tn

n!
.

As a result, it follows that

∞∑
n=1

[
n∑

k=1

1

k
(
n+k
k

) k∑
`=0

(−1)`+1

(
n+ k

k − `

)
S(n+ `, `)

]
tn

n!
<

∞∑
n=1

(−1)nBn
tn

n!
, t 6= 0.

The function ln et−1
t may be written as

ln
et − 1

t
= − ln

t

et − 1
= − ln

[
1− t

2
+

∞∑
k=1

B2k
t2k

(2k)!

]

= −
∞∑

n=1

[
n∑

k=1

(−1)k−1(k − 1)!Bn,k

(
−1

2
, B2, 0, B4, 0, . . . , Bn−k+2

)]
tn

n!
.

Remark 3.4. For given numbers b > a > 0, let

ga,b(t) =


bt − at

t
, t 6= 0;

ln b− ln a, t = 0.
(7)

In Guo and Qi (2009b), (Qi et al., 2009, Lemma 1), and (Guo and Qi, 2011,
Theorem 2.1), the following conclusions were discovered and applied: the func-
tion ga,b(t) is logarithmically convex on (−∞,∞), 3-log-convex on (−∞, 0),
and 3-log-concave on (0,∞). For more and detailed information, please refer
to the survey article Qi et al. (2014a) and closely references therein.

Remark 3.5. In (?, Theorem 5.2), it was obtained that the logarithmic poly-
nomials Ln for n ∈ N may be computed by

Ln = gn −
n−1∑
k=1

(
n− 1

k − 1

)
gn−kLk (8)
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and

Ln = gn + (n− 1)!

n−1∑
j=1

(−1)j
∑

∑j
i=0 mi=n

1≤mk−1≤n−j+k−1−
∑k−2

i=0 mi

1≤k≤j

mj

j∏
i=0

gmi

mi!
. (9)

Remark 3.6. The inequality (2) may also be rewritten as follows. For x > −1
and x 6= 0, we have

x

ln(1 + x)

[
1 + ln

x

ln(1 + x)

]
< 1 + x, (10)

that is,
x

(1 + x) ln(1 + x)

[
1 + ln

x

ln(1 + x)

]
< 1. (11)

The functions x
ln(1+x) and x

(1+x) ln(1+x) are respectively generating functions of
the Bernoulli numbers of the second kind and the Cauchy numbers of the second
kind. See Qi (2013, 2014a,b), Qi and Zhang (2015) and closely related reference
therein.

Remark 3.7. In the papers Guo et al. (2008), Guo and Qi (2009a, 2010),
Liu et al. (2008), Qi (1997, 2006), Qi et al. (2014a), Zhang et al. (2009),
there have been many inequalities related to the exponential function and their
applications.

Remark 3.8. This paper is a slightly revised version of the preprint Guo and
Qi (2015b).
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